quadratic-residue tournament - definição. O que é quadratic-residue tournament. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é quadratic-residue tournament - definição

IN NUMBER THEORY CONCERNING PRIMES
Euler criterion; Euler's quadratic residue theorem; Euler quadratic residue theorem; Euler's Criterion

Quadratic residue         
INTEGER THAT IS A PERFECT SQUARE MODULO SOME INTEGER
Quadratic residues; Quadratic non-residue; Quadratic congruences; Quadratic congruence; Modular square root; Square root modulo n; Square root mod n; Quadratic residuosity; Quadratic nonresidue; Least quadratic non-residue; Quadratic excess
In number theory, an integer q is called a quadratic residue modulo n if it is congruent to a perfect square modulo n; i.e.
Quadratic irrational number         
MATHEMATICAL CONCEPT
Quadratic surd; Quadratic irrationality; Quadratic Irrational Number; Quadratic irrationalities; Quadratic irrational; Quadratic irrational numbers
In mathematics, a quadratic irrational number (also known as a quadratic irrational, a quadratic irrationality or quadratic surd) is an irrational number that is the solution to some quadratic equation with rational coefficients which is irreducible over the rational numbers.Jörn Steuding, Diophantine Analysis, (2005), Chapman & Hall, p.
Residue (complex analysis)         
COEFFICIENT OF THE TERM OF ORDER −1 IN THE LAURENT EXPANSION OF A FUNCTION HOLOMORPHIC OUTSIDE A POINT, WHOSE VALUE CAN BE EXTRACTED BY A CONTOUR INTEGRAL
Residue of an analytic function; Residue at a pole; Complex residue; Residue (mathematics)
In mathematics, more specifically complex analysis, the residue is a complex number proportional to the contour integral of a meromorphic function along a path enclosing one of its singularities. (More generally, residues can be calculated for any function f\colon \mathbb{C} \setminus \{a_k\}_k \rightarrow \mathbb{C} that is holomorphic except at the discrete points {ak}k, even if some of them are essential singularities.

Wikipédia

Euler's criterion

In number theory, Euler's criterion is a formula for determining whether an integer is a quadratic residue modulo a prime. Precisely,

Let p be an odd prime and a be an integer coprime to p. Then

a p 1 2 { 1 ( mod p )  if there is an integer  x  such that  a x 2 ( mod p ) , 1 ( mod p )  if there is no such integer. {\displaystyle a^{\tfrac {p-1}{2}}\equiv {\begin{cases}\;\;\,1{\pmod {p}}&{\text{ if there is an integer }}x{\text{ such that }}a\equiv x^{2}{\pmod {p}},\\-1{\pmod {p}}&{\text{ if there is no such integer.}}\end{cases}}}

Euler's criterion can be concisely reformulated using the Legendre symbol:

( a p ) a p 1 2 ( mod p ) . {\displaystyle \left({\frac {a}{p}}\right)\equiv a^{\tfrac {p-1}{2}}{\pmod {p}}.}

The criterion first appeared in a 1748 paper by Leonhard Euler.